Desafios da inferência causal

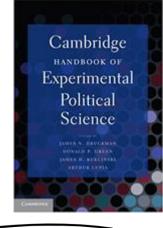
Avaliação de Políticas Públicas A (DCP131)

28 de maio e 02 de junho de 2025

Leitura básica:

GERTLER, Paul J. et al. **Avaliação de impacto na prática**. Washington: Banco Interamericano de Desenvolvimento; Banco Mundial, 2018. [Capítulo 3: Inferência causal e contrafactuais.] Disponível em: https://openknowledge.worldbank.org/bitstream/handle/10986/25030/9781464808890.pdf

Leitura complementar:


JANNUZZI, Paulo de Martino. **Monitoramento e avaliação de programas sociais**. Campinas, SP: Editora Alínea, 2016. pp. 89-100.

RAMOS, Marília Patta. Aspectos conceituais e metodológicos da avaliação de políticas e programas sociais. **Planejamento e Políticas Públicas**, n. 32, jan.-jun./2009, p. 95-114. Disponível em: https://www.ipea.gov.br/ppp/index.php/PPP/article/view/11

Como podemos apurar causalidade/ causação?

- Uma resposta: somos convencidos pela evidência (i.e., informação que outros podem verificar)
- Qual a base da evidência? Em alguns casos, "vemos" causas se desdobrarem em efeitos (e.g., vela tombar e começar um incêndio)
- Na avaliação de intervenções (e.g., alteração normativa, política pública), frequentemente precisamos rastrear uma cadeia causal, o que pode ser complicado
- Quando não há como observar diretamente causa e efeito, procuramos evidência de associação causal em dados

Como endereçar questões sobre causalidade?

Uma questão causal convida a uma comparação entre dois estados do mundo: um em que algum tipo de intervenção é administrado (um estado tratado, ou seja, um estado que expõe o sujeito a estímulos) e outro em que essa intervenção não está presente (um estado não tratado). O problema fundamental da inferência causal surge porque não podemos observar simultaneamente uma pessoa ou entidade em seus estados tratado e não tratado (Holland, 1986).

Druckman et al. (2011, p. 15-16; tradução nossa)

Ou seja, não podemos observar o estado contrafactual.

O elusivo contrafactual: como teria sido a vida se não tivesse sido como foi

Podemos observar:

- Resultados para unidades (casos) que receberam o tratamento
- Resultados para unidades que n\u00e3o receberam o tratamento

Factual

Não podemos observar:

- III. O que teria acontecido se as unidades que receberam o tratamento não o tivessem recebido
- IV. O que teria acontecido se as unidades que não receberam o tratamento o tivessem recebido

Contrafactual

Segundo a lógica da explicação nomotética*, há três requisitos para inferência causal

Huetração

Para que um resultado seja considerado consequência de uma suposta causa, todos os três critérios devem ser atendidos

Doscricão

Critária

Criterio	Descrição	iiustração
Anterioridade	 Pretensa causa (X) precede variação observada na variável dependente (Y) 	$\Delta X \longrightarrow \Delta Y$
Associação (a.k.a. correlação)	 Existe uma associação empírica entre X e Y 	ΔX ΔΥ Correlação é uma forma de se apurar associação entre duas variáveis. Frequentemente, toma-se a parte pelo todo, usando-se o termo "correlação" como sinônimo de "associação".

^{*} A explicação nomotética (vs. idiográfica) busca identificar alguns poucos fatores que em geral impactam uma classe de condições ou eventos. Assume causação probabilística (Babbie, 2004).

Duas variáveis são associadas se elas "se movimentam juntas"

- Associação positiva: valores altos (baixos) de uma variável são mais frequentes quando a outra variável apresenta valores altos (baixos)
 - Relação/ associação "direta"
- Associação negativa: valores altos de uma variável são mais frequentes quando a outra variável apresenta valores baixos
 - Relação/ associação "inversa"

Relembrando o coeficiente de correlação de Pearson

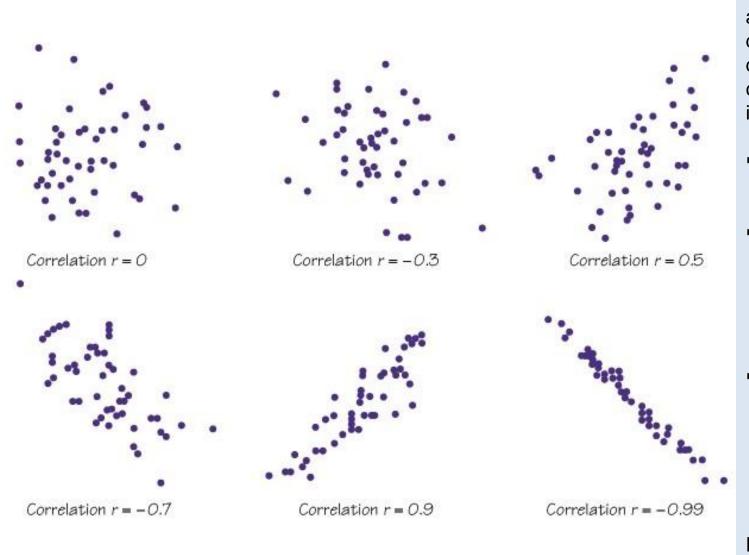
- O coeficiente de correlação de Pearson varia de -1 a +1:
 - -1 indica uma associação linear negativa perfeita
 - +1 indica uma associação linear positiva perfeita
 - 0 significa que não há associação linear
- Quanto mais próximo o coeficiente de correlação de Pearson estiver de +1 ou -1, mais forte é a associação linear entre as duas variáveis
- O coeficiente de correlação de Pearson é normalmente representado pelas letras "r" ou "ρ" (letra grega rô)

Qual a correlação entre consumo de donuts e massa (peso)?

Table 1.1: Donut Consumption and Weight

Observation number	Name	Donuts per week	$\begin{array}{c} {\rm Weight} \\ {\rm (pounds)} \end{array}$
1	Homer	14	275
2	Marge	0	141
3	Lisa	0	70
4	Bart	5	75
5	Comic Book Guy	20	310
6	Mr. Burns	0.75	80
7	Smithers	0.25	160
8	Chief Wiggum	16	263
9	Principal Skinner	3	205
10	Rev. Lovejoy	2	185
11	Ned Flanders	0.8	170
12	Patty	5	155
13	Selma	4	145

Fonte: Bailey (2016, p. 5).

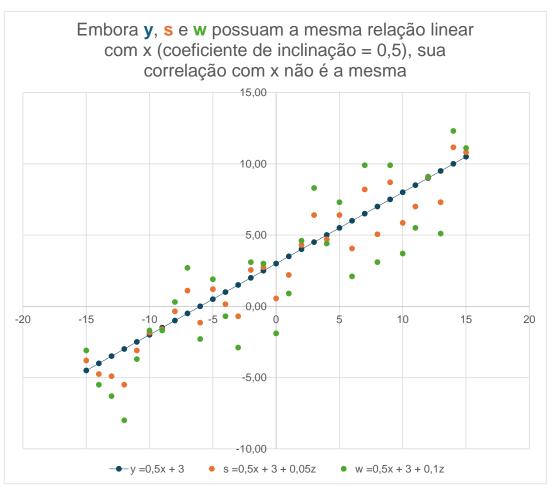


Relembrando o coeficiente de correlação de Pearson

$$r = \frac{\sum_{i=1}^{n} [(x_i - \overline{x}) * (y_i - \overline{y})]}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 * \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

- Numerador é chamado de soma dos produtos cruzados
- Conceitualmente, numerador é uma medida de quanto os valores dos pares ordenados (x_i, y_i) são associados
- Denominador "padroniza" o numerador, removendo os efeitos das unidades de medida; assim, é possível comparar correlações, independentemente da escala das variáveis

Alguns exemplos de correlação


Atenção:

Observe a direção da associação (sinal) e a dispersão na nuvem de pontos; não confunda com inclinação

- Se inclinação = 0, correlação = 0
- Porém, séries de mesma inclinação podem apresentar correlações diferentes
- Da mesma forma, séries com inclinações diferentes podem apresentar a mesma correlação

Está com tempo? https://www.geogebra. org/m/KE6JfuF9

Correlação vs. Inclinação (1/2)

Х	Z*	У	S	W
-15	14	-4,50	-3,80	-3,10
-14	-15	-4,00	-4,75	-5,50
-13	-28	-3,50	-4,90	-6,30
-12	-50	-3,00	-5,50	-8,00
-11	-12	-2,50	-3,10	-3,70
-10	3	-2,00	-1,85	-1,70
-9	-2	-1,50	-1,60	-1,70
-8	13	-1,00	-0,35	0,30
-7	32	-0,50	1,10	2,70
-6	-23	0,00	-1,15	-2,30
-5	14	0,50	1,20	1,90
-4	-17	1,00	0,15	-0,70
-3	-44	1,50	-0,70	-2,90
-2	11	2,00	2,55	3,10
-1	5	2,50	2,75	3,00
0	-49	3,00	0,55	-1,90
1	-26	3,50	2,20	0,90
2	6	4,00	4,30	4,60
3	38	4,50	6,40	8,30
4	-6	5,00	4,70	4,40
5	18	5,50	6,40	7,30
6	-39	6,00	4,05	2,10
7	34	6,50	8,20	9,90
8	-39	7,00	5,05	3,10
9	24	7,50	8,70	9,90
10	-43	8,00	5,85	3,70
11	-30	8,50	7,00	5,50
12	1	9,00	9,05	9,10
13	-44	9,50	7,30	5,10
14	23	10,00	11,15	12,30
15	6	10,50	10,80	11,10
9,09	26,75	4,55	4,77	5,33
1,00	0,02	1,00	0,96	0,86
ria contida no intervalo [-50, 50], adicionada para criar s				

Nota: * A variável z é uma variável aleatória contida no intervalo [-50, 50], adicionada para criar s e w (variáveis com maior dispersão que y). Embora s e w possuam a mesma relação linear com x (coeficiente de inclinação de 0,5), sua correlação com x (0,96 e 0,86, respectivamente) é menor que aquela entre x e y (1,00).

Variáveis:

Desvio padrão: Correlação com x:

Correlação vs. Inclinação (2/2)

-20

-15

 $-\bullet$ y1 =0,25x + 10

-10

Embora y2 e s2 possuam a mesma correlação com x

(0,86), sua relação linear com x não é a mesma

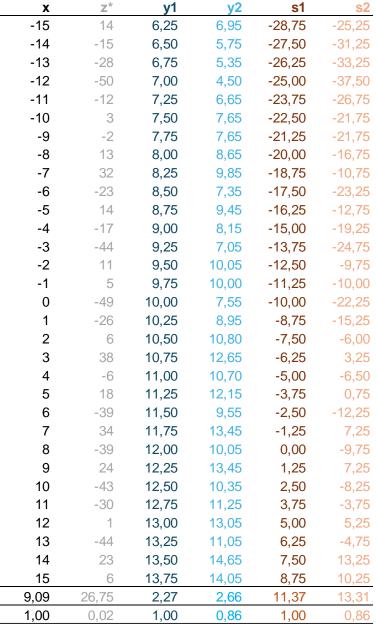
20,00

0,00

-20,00

-30,00

-40,00

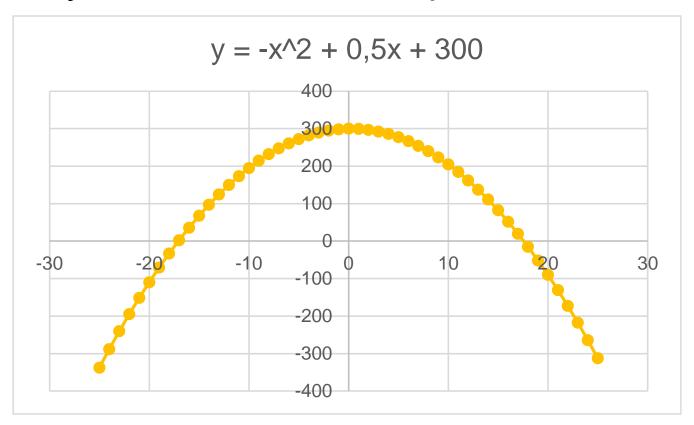

-50.00

• y2 = 0.25x + 10 + 0.05z - = 1.25x - 10

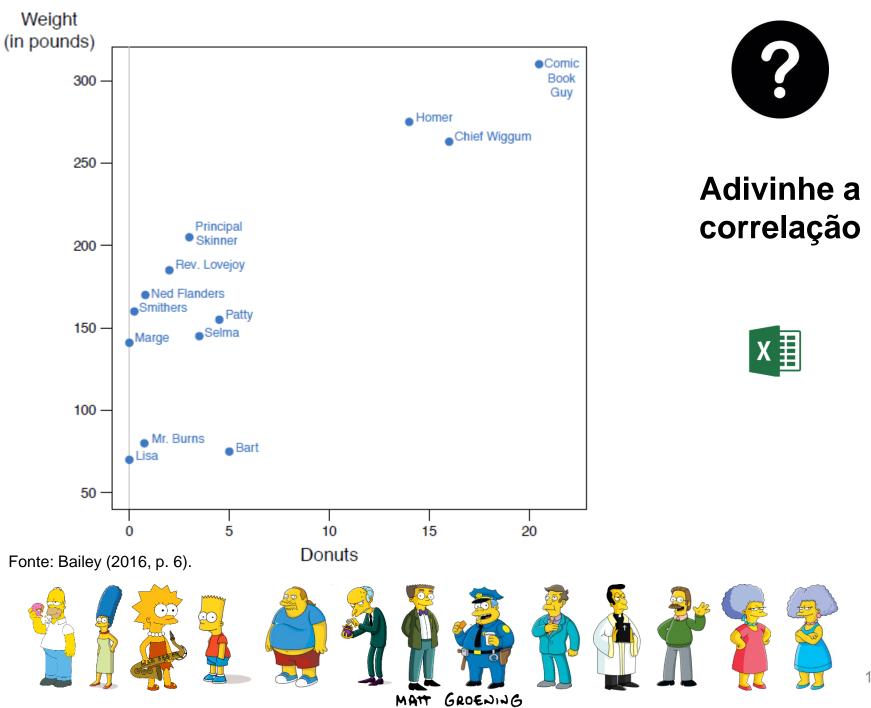
Variáveis:

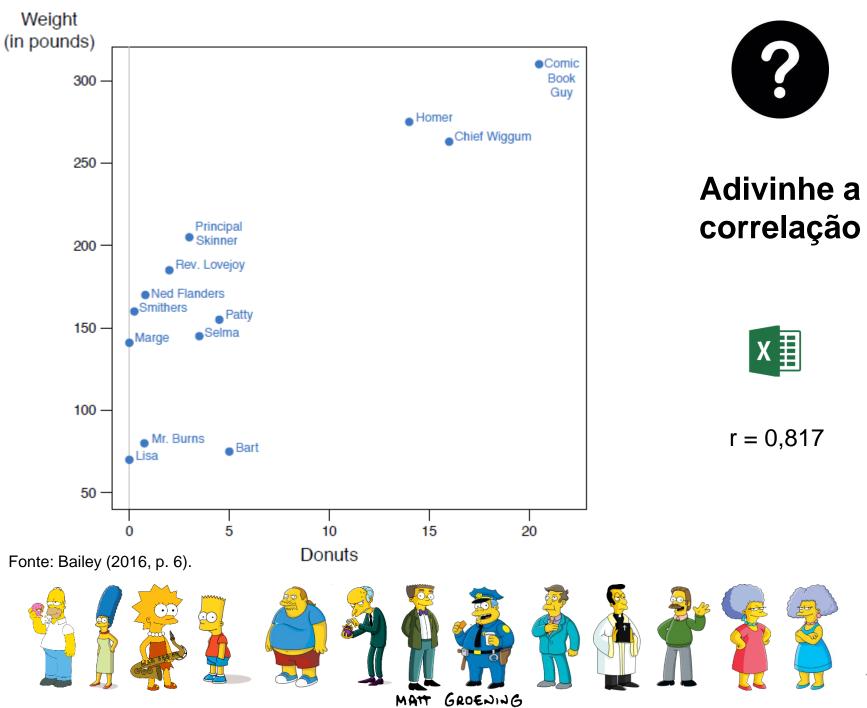
15

20



	8	-39	12,00	10,05	0,00	-9,75
	9	24	12,25	13,45	1,25	7,25
	10	-43	12,50	10,35	2,50	-8,25
	11	-30	12,75	11,25	3,75	-3,75
	12	1	13,00	13,05	5,00	5,25
s2 = 1,25x - 10 + 0,25z	13	-44	13,25	11,05	6,25	-4,75
	14	23	13,50	14,65	7,50	13,25
	15	6	13,75	14,05	8,75	10,25
Desvio padrão:	9,09	26,75	2,27	2,66	11,37	13,31
Correlação com x:	1,00	0,02	1,00	0,86	1,00	0,86
Nota: * A variával z á uma variával aleatória contida no intervalo [-50, 50], adicionada para criar						

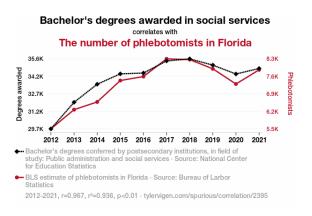

Nota: * A variável z é uma variável aleatória contida no intervalo [-50, 50], adicionada para criar y2 e s2 (variáveis com maior dispersão que y1 e s1, respectivamente). Embora y2 e s2 possuam a mesma correlação com x (0,86), sua relação linear com x não é a mesma (coeficientes de inclinação de 0,25 e 1,25, respectivamente). 13


Relembrando o coeficiente de correlação de Pearson

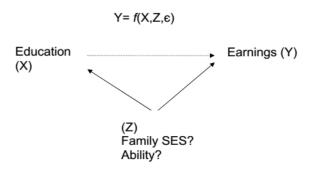
 O coeficiente de correlação de Pearson é uma medida do grau de associação linear entre duas variáveis quantitativas

$$Corr(x,y) = 0.03797225$$

Segundo a lógica da explicação nomotética*, há três requisitos para inferência causal



Para que um resultado seja considerado consequência de uma suposta causa, todos os três critérios devem ser atendidos


Critério	Descrição	Ilustração	
Anterioridade	 Pretensa causa (X) precede variação observada na variável dependente (Y) 	$\Delta X \longrightarrow \Delta Y$	
Associação (a.k.a. correlação)	 Existe uma associação empírica entre X e Y 	$\Delta X \longrightarrow \Delta Y$	
Não espuriedade (da associação)	 Variação em Y não pode ser atribuída a outra causa (e.g., a outra intervenção) 	$\begin{array}{ccc} \Delta X & \xrightarrow{a} & \Delta Y \\ \hline & & & \\ & & \Delta Z & \end{array}$	

^{*} A explicação nomotética (vs. idiográfica) busca identificar alguns poucos fatores que em geral impactam uma classe de condições ou eventos. Assume causação probabilística (Babbie, 2004).

Nem toda associação é causal: tipos de associação espúria

- Associações podem ser fortuitas (i.e., fruto do acaso). Exemplos:
 - http://www.tylervigen.com/spuriouscorrelations

Associações podem ser **explicadas** pela relação de ambos X e Y com uma terceira variável, Z. Exemplos:

- Consumo de sorvete e mortes por afogamento
- Golfada e engorda de bebês (Figueiredo Filho e Silva Júnior, 2009, p. 131-132)

Desafios da inferência causal

Avaliação de Políticas Públicas A (DCP131)

28 de maio e 02 de junho de 2025

Leitura básica:

GERTLER, Paul J. et al. **Avaliação de impacto na prática**. Washington: Banco Interamericano de Desenvolvimento; Banco Mundial, 2018. [Capítulo 3: Inferência causal e contrafactuais.] Disponível em: https://openknowledge.worldbank.org/bitstream/handle/10986/25030/9781464808890.pdf

Leitura complementar:

JANNUZZI, Paulo de Martino. **Monitoramento e avaliação de programas sociais**. Campinas, SP: Editora Alínea, 2016. pp. 89-100.

RAMOS, Marília Patta. Aspectos conceituais e metodológicos da avaliação de políticas e programas sociais. **Planejamento e Políticas Públicas**, n. 32, jan.-jun./2009, p. 95-114. Disponível em: https://www.ipea.gov.br/ppp/index.php/PPP/article/view/11